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The Anderson model for a single impurity coupled to two leads is studied using the GW approximation in
the strong electron-electron interaction regime as a function of the alignment of the impurity level relative to
the chemical potentials in the leads. We employ a nonequilibrium Green’s function technique to calculate the
electron self-energy, the spin density, and the current as a function of bias across the junction. In addition we
develop an expression for the change in the expectation value of the energy of the system that results when the
impurity is coupled to the leads, including the role of Coulomb interactions through the electron self-energy in
the region of the junction. The current-voltage characteristics calculated within the GW approximation exhibit
Coulomb blockade. Depending on the gate voltage and applied bias, we find that there can be more than one
steady-state solution for the system, which may give rise to a hysteresis in the I-V characteristics. We show that
the hysteresis is an artifact of the GW approximation and would not survive if quantum fluctuations beyond the
GW approximation are included.
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I. INTRODUCTION

Transport through nanoscale junctions poses a number of
interesting physical problems. In particular, electron-electron
interaction effects may be important, as evidenced by the
observation of phenomena such as the Coulomb blockade
and the Kondo effect.1,2 The local electronic structure is also
important. The energy and character of the electronic states
in the junction region that are responsible for electron trans-
port will depend on the details of bonding between the mol-
ecule and the electrode. This has motivated the use of ab
initio theories for electron transport through nanostructures
that are based on density-functional theory �DFT�. However,
local-density functionals do not treat the discreteness of
charge properly.3,4 In particular Coulomb blockade phenom-
ena become problematic. Even on the level of model sys-
tems, a complete solution of the nonequilibrium interacting
electron problem is not available. The numerical methods
which work so well in equilibrium are only beginning to be
applied to nonequilibrium systems.5–12 Many groups are ex-
ploring self-consistent perturbative and other nonperturbative
approaches13–20 However, a complete treatment which can be
extended to incorporate actual junction-specific aspects is not
yet available.

In this work, we study a model system, namely, the single
impurity Anderson model21 coupled to two leads. We use a
Green’s function approach to calculate the properties of the
junction, both in equilibrium and as a function of applied
bias across the junction. The electron-electron interactions
are incorporated through the electron self-energy operator on
the impurity, using an out-of-equilibrium generalization of
the GW approximation.22 Using this approach we can calcu-

late the local spin density in the junction and the current as a
function of bias. In addition we develop and apply an exten-
sion to nonzero bias of the usual expression23 for the change
in the average energy of the impurity due to coupling to the
leads. The GW approximation has been widely and success-
fully used to study electronic excitations in materials at equi-
librium with a realistic atomic scale description.24–28 This is
one of the motivations to study the out-of-equilibrium gen-
eralization for nanoscale junctions.14–17 In particular, the in-
termediate coupling/interaction regime of the single impurity
Anderson model has recently been studied using the GW
approximation.15,16

We are interested in the intermediate to strong-coupling
regime, in which Coulomb blockade effects are important. At
equilibrium and for zero temperature, as the local Coulomb
interaction on the impurity is increased �relative to the hy-
bridization with the leads�, a local-moment forms. In the
limit of kBT→0 and vanishing bias, the local moment on the
impurity is quenched through formation of a singlet ground
state. The spectral function splits into three parts: two Hub-
bard bands and one central Kondo peak. In a closely related
earlier study,29 it was shown that in the regime of intermedi-
ate strength of the Coulomb interaction, the GW approxima-
tion provides an incorrect representation of the linear-
response conductance. In fact, this regime is not well
described at equilibrium even by more sophisticated pertur-
bative approaches, such as the fluctuation-exchange
approximation.30,31 Here we probe the strong-coupling Cou-
lomb blockade regime. In this regime, the Kondo tempera-
ture TK becomes very small and at experimentally relevant
temperature scales the Kondo peak will be washed out. Simi-
larly, when considering bias large compared to the Kondo
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temperature, the Kondo peak also gets washed out.32,33 In
these regimes a self-consistent perturbative approach may be
adequate. We find through nonequilibrium calculations that
the self-consistent GW approximation can describe important
features of the Coulomb blockade regime, such as the Cou-
lomb diamond signature with no Kondo-assisted tunneling,
in accordance with experiments on single-molecule transis-
tors characterized by weak effective coupling between mol-
ecule and electrodes.1

The nonequilibrium GW calculations exhibit hysteresis in
the I-V characteristics: at some values of applied bias and
gate voltage, there is more than one steady-state solution. A
related example of bistability has been found in DFT calcu-
lations of a junction involving an organometallic molecule.34

However, we believe that in the problem that we study here,
the hysteresis is an artifact of the approximation.18 In funda-
mental terms, a molecular junction is a quantum field theory
in zero space and one time dimension. Model system
calculations18,19 have confirmed that departures from equilib-
rium act as an effective temperature which allows the system
to explore all of its phase space, preventing bistability from
occurring. We will show by an energy calculation that in the
present problem similar processes exist.

The rest of the paper is organized as follows. In Sec. II,
the model Hamiltonian is described. Section III presents the
nonequilibrium self-consistent Green’s function approach
that we use, including the GW approximation, an expression
for the change in the average energy, as well as an expression
for the current that allows distinguishing of the Landauer-
type and the noncoherent contributions. The results of the
calculations for the single impurity Anderson model are de-
veloped in Sec. IV. Derivations of the expressions for the
physical observables appear in Appendixes A and C.

II. MODEL HAMILTONIAN

We consider the Anderson model for an impurity coupled
symmetrically to noninteracting leads. We are interested in
steady-state solutions of this system. The Hamiltonian de-
scribing the system, H, can be written as a sum of a nonin-
teracting part, H0, plus an interacting one, He-e, describing
the electron-electron interaction in the impurity: H=H0
+He-e.

The noninteracting part is treated at the tight-binding level
�Fig. 1�a��. The left �L� and right �R� leads are modeled as
semi-infinite chains of atoms �i=1, . . .� or −1, . . .−��, char-
acterized by the hopping parameter t and chemical potentials
�L and �R. We choose t=5, resulting in the bandwidth of the
metallic leads extending to �10 about the chemical potential
of each lead which we fix at the center of each electrode
band. The system is driven out of equilibrium by applying a
source-drain bias voltage V, setting �L=−�R=V /2; the im-
purity levels can also be shifted according to a gate voltage
VG �Fig. 1�b��. The hybridization term describes the coupling
between the impurity �site 0� and the nearest atoms of the
two leads �sites �1�, and is parametrized according to the
hopping parameter �.

H0 = �LNL + �RNR + VGn0 − t� �
i=−�

−2

+ �
i=1

� �
��

�

�ci�
† ci+1� + ci+1�

† ci�� − � �
i=−1,1

�
�

�ci�
† c0� + c0�

† ci�� ,

�1�

where NL�R� are the electron number operators in the L�R�
leads:

NL = �
i=−�

−1

�
�

ci�
† ci�; NR = �

i=1

�

�
�

ci�
† ci�, �2�

and n0 is the electron number in the impurity:

n0 = �
�

c0�
† c0�. �3�

The electron-electron interaction inside the impurity is
taken into account through the usual U term:

He-e = Un0↑n0↓ =
1

2 �
�,��,	,	�

c0,�
† c0,	

† Ṽ���,		�c0,	�c0,��. �4�

There are several choices we can make for the two-particle

interaction Ṽ���,		�. We choose one that describes nonspin-
flip scattering:

Ṽ���,		� = V�	
���
		�, �5�

and has a spin-dependent form:

V�	 = U�1 − 
�	� . �6�

Another choice for the two-particle interaction, which results
in the same Hamiltonian as in Eq. �4� would be one with a
spin-independent form: V�	=U. However, in the context of
the GW approximation for the Anderson model, the spin-
dependent form is a better choice.29 Indeed, it has been
shown that the spurious self-interactions can be a major
source of error in transport calculations, especially when the
coupling to the leads is weak.4 Comparing the two choices
for V�	, the spin-dependent one has the advantage of being
free of self-interaction effects, and it also accounts for more
quantum fluctuations in the spin-spin channel.29

... ...

γ t
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µ
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FIG. 1. �Color online� Schematic view of the Anderson impurity
model system considered. �a� Tight-binding model for the noninter-
acting system. �b� Definition of applied source-drain bias V and gate
voltage VG.
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In the present model, the potential due to the applied
source-drain bias V and gate voltage VG changes only at the
junction contacts �Fig. 1�b��. Also, the direct electron-
electron interaction between the impurity and the leads is
neglected. These approximations are justified in realistic sys-
tems in which the screening length in the leads is very short.
We are interested in the limit of very small effective coupling
to the leads ��2�2 / t. Our choices �=0.35 and t=5 imply
�=0.05. The on-site Coulomb repulsion between a spin-up
and a spin-down impurity electron is set to U=4.78	100�.
At equilibrium and half filling, the Kondo temperature TK is
then35:

TK 
 0.2�2�U exp�− �U/8�� , �7�

which is thus negligibly small. The results that we present
for this set of parameters hold, qualitatively, for a wide range
of parameters consistent with a weak hybridization and
strong Coulomb interaction regime.

III. SELF-CONSISTENT NONEQUILIBRIUM GREEN’S
FUNCTION FORMALISM

A. Hamiltonian and basic formalism

Electron correlation effects in the impurity are studied
using a nonequilibrium Green’s function formalism by solv-
ing self-consistently for the various �retarded �r�, advanced
�a�, lesser �
� and greater ���� Green’s functions of the
impurity36,37:

Gr��� = ��� − VG�I − �L
r ��� − �R

r ��� − VH − �r����−1,

�8�

G
��� = Gr����ifL����L��� + ifR����R��� + �
����Ga��� ,

�9�

where all quantities are matrices in the space spanned by the
junction degrees of freedom, in the present case the up and
down components of the impurity spin.38

Above, �r stands for the retarded lead self-energy, which,
for our model Hamiltonian, takes the form39:

�L�R�
r ��� = I

�2

2t2 � � � − �L�R� − ��� − �L�R��2 − 4t2, � − �L�R� � 2t

� − �L�R� − i�4t2 − �� − �L�R��2, 
� − �L�R�
 � 2t

� − �L�R� + ��� − �L�R��2 − 4t2, � − �L�R� 
 − 2t
� �10�

where I is the unity matrix in spin space, and we have used
the notation:

�L�R���� � i��L�R�
r ��� − �L�R�

r ���†� . �11�

The hybridization functions �L�R� are centered on the chemi-
cal potentials �L�R�, such that the isolated leads are neutral.

VH represents the Hartree potential:

V���
H = 
����

��
� dE

2�
�− i�G����


 �E�V���, �12�

and �r ��
� is the retarded �lesser� impurity self-energy,
describing the effects of electron correlation inside the junc-
tion. The electron occupation numbers appearing in Eq. �9�
are the usual statistical factors for a system of electrons:
fL�R����=1 / �exp���−�L�R�� /kBT�+1�. Since we operate in
the regime of very small Kondo temperature, we envision
choosing an experimentally relevant temperature that is large
compared to TK but which is much smaller than the coupling
to the electrodes.

The other two nonequilibrium impurity Green’s functions
can be simply obtained using:

Ga��� = Gr���†, �13�

G���� = Gr��� − Ga��� + G
��� . �14�

B. GW approximation for the impurity self-energy

In the GW approximation for the electron self-energy, one
does perturbation theory in terms of the screened interaction
W, keeping the first term in the expansion, the so-called GW
diagram. The GW approximation has long been successfully
used in describing the equilibrium quasiparticle properties of
real materials.24–28 It has also been applied to the study of
real materials out of equilibrium, such as highly irradiated
semiconductors,40 or, more recently, in transport calculations
through molecular nanojunctions.14,15,17 For equilibrium
properties the GW approximation has been compared to a
numerically exact quantum Monte Carlo treatment29; it has
been found to be adequate for small interactions or for high
T, but not in the mixed valence or Kondo regimes.

Within the out-of-equilibrium GW approximation, the
general self-energy expressions have the following form in
frequency space40:

����
r ��� = i� dE

2�
G���


 �E�W���
r �� − E�

+ i� dE

2�
G���

r �E�W���
� �� − E� , �15�

GW APPROACH TO ANDERSON MODEL OUT OF… PHYSICAL REVIEW B 79, 155110 �2009�

155110-3



����

 ��� = i� dE

2�
G���


 �E�W���

 �� − E� , �16�

where the screened interaction W can be obtained from the
irreducible polarizability P through

Wr��� = �I − VPr����−1V , �17�

W
��� = Wr���P
���Wa��� , �18�

W���� = Wr���P����Wa��� . �19�

The irreducible polarization P is evaluated in the random-
phase approximation �RPA�:

P���
r ��� = − i� dE

2�
G���

r �E�G���

 �E − ��

− i� dE

2�
G���


 �E�G���
a �E − �� , �20�

P���
a ��� = − i� dE

2�
G���

a �E�G���

 �E − ��

− i� dE

2�
G���


 �E�G���
r �E − �� , �21�

P���

 ��� = − i� dE

2�
G���


 �E�G���
� �E − �� . �22�

Setting P=0 yields the Hartree-Fock approximation.
The set of equations for G, �, W, and P are solved to

self-consistency, starting from an initial condition for G. All
the quantities are calculated on a real frequency grid �either
regular or log scale�, with a � range up to �10t. Real and
imaginary parts of the various quantities are calculated ex-
plicitly, making sure that the retarded functions obey the
Kramers-Kronig relation. In order to speed up the self-
consistent process, we employ the Pulay scheme to mix the

Green’s functions using previous iterations solutions16,41:

Gin
j+1 = �1 − ��Gin

j + �Gout
j , �23�

where Gn are constructed from the previous m iterations:

G j = �
i=1

m

	iG j−m+i, �24�

and we choose three components for the parameter vector G:
RGr, IGr, and IG
. The values of 	i are obtained by mini-
mizing the distance between Gin

j and Gout
j . The scalar product

in the parameter space is defined using the integral in Fourier
space of a product of the component Green’s functions. We
found the speed of the convergence process to be quite inde-
pendent on the choice of reasonable values for m, as well as
on the number of components for the parameter vector G. As
for the parameter �, smaller values �
0.1� were needed for
small bias voltages �V
0.5�, while �=0.4 was sufficient in
order to achieve fast convergence for larger biases.

C. Relation to physical observables

The Green’s functions of the impurity can be used to ex-
tract information about observables pertaining to the impu-
rity or even to the leads. Thus, the spectral function of the
impurity A��� is simply related to the retarded Green’s func-
tion:

A��� = −
1

�
TrIGr��� , �25�

where Tr stands for trace over the impurity spin degrees of
freedom. Also, the average impurity spin occupation number
is

�n0,�� =� d�

2�i
G��


 ��� . �26�

The expression for the average current passing through the
junction is given by the general Meir-Wingreen expression,42

which can be recast as �see Appendix A for the derivation�:

I =� d��fL��� − fR����Tr��L���Gr����R���Ga���� +� d�Tr���L��� − �R����Gr���� i

2
�
����Ga����

+� d�Tr��fL����L��� − fR����R����Gr����− I�r����Ga���� . �27�

The first �Landauer type� term plays an important role when-
ever correlations beyond the Hartree-Fock level are not con-
siderable. It gives the coherent component of the current.
The second term is in general very small for symmetric leads
with relatively wide bands, when �L���
�R���. The last
term becomes important when the electron-electron correla-
tion effects are such that −I�r
�L�R�.

Having an expression for the average energy associated
with the junction for nonequilibrium can be useful for a
number of purposes, including calculation of current depen-
dent forces.43 By formulating this as the difference 
E be-
tween the average energy of the total system �leads coupled
to impurity� and the average energy of the isolated leads, a
finite result can be obtained. This can be done starting with
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the following expression for the total average energy of the
system46:

E =
1

2
� d�

2�i
T̃r��H0 + �I�G
���� , �28�

where the trace T̃r is taken over a complete set of states
spanning the junction �indices n� and the leads �indices k�.
Alternatively, an equation of motion approach can be used.23

We find that the two approaches give the same results. The
first approach is presented in Appendix B. Naturally, the en-
ergy can be decomposed into three terms, related, respec-
tively, to the average energy of the impurity Eimp, the average
energy of interaction between leads and impurity Eimp-leads,
and the average energy difference in the leads before and
after adding the impurity 
Eleads:


E = Eimp + Eimp-leads + 
Eleads, �29�

where:

Eimp =
1

2
� d�

2�i
�� + VG�TrG
��� , �30�

Eimp-leads =� d�

2�i
Tr��R�L

r ��� + R�R
r ����

�G
��� − i�fL���I�L
r ��� + fR���I�R

r ����

��Ga��� + Gr����� , �31�


Eleads =
1

2
� d�

2�i
Tr��RFL��� + RFR����G
���

− i�fL���IFL��� + fR���IFR�����Ga��� + Gr����� ,

�32�

with

FL�R�nm
��� = − �L�R�

r ��� − 2�
d

d�
�L�R�

r . �33�

We note that the average energy change in the two leads is
always finite in the steady-state case. A similar statement
holds for the average number of electrons displaced in the
two leads 
Nleads �explicit expression in Appendix C�.

IV. RESULTS

A. Coulomb blockade

In the weak-coupling/strong-interaction regime, the elec-
tron transport through a junction can be blocked due to the
charging energy in the junction. Figure 2�a� shows the cal-
culated impurity occupation number �n0�= �n0↑�+ �n0↓� as a
function of the gate voltage VG, at zero applied bias V=0.44

One can clearly see the Coulomb staircase. The electron-hole
symmetry of the Hamiltonian describing the system, H, in-
sures that the spectral function satisfies A�� ;VG+U /2�=A
�−� ;−VG−U /2�. As a consequence, one has �n0�VG
+U /2��=2− �n0�−VG−U /2��. A similar Coulomb staircase
picture can be obtained at the Hartree-Fock approximation
level.

The impurity occupation number evolves from zero to
two as VG is decreased from positive to negative values.
Figure 2�b� shows the evolution of the spectral function for
three representative values of VG. For VG+U /2= �4, the
solution is nonmagnetic, with both spin levels degenerate,
empty, or occupied. At the symmetric point �half filling�
VG+U /2=0, the solution is a broken-symmetry magnetic
ground state, with one spin occupied and the other empty.
Since we consider temperatures that, although small, are still
large compared to TK, the degenerate magnetic ground state
is an appropriate representation of the physics. In Fig. 2�a�,
the magnetic solution is found for 
VG+U /2

2; for 2

 
VG+U /2

3, a well converged �nonmagnetic� solution
could not be found at kBT=0.

Figure 3�a� shows a color-scale plot of the current I as a
function of the applied bias V and gate voltage VG. The plot
is obtained by forward scan of the bias, i.e., using the lower
bias solution as starting input for the higher bias calculation.
One can see the formation of Coulomb diamonds, inside
which the current is negligible, a signature of the Coulomb
blockade regime. A similar color-scale plot of the differential
conductivity would show sharp peaks at the edges of the
Coulomb diamonds but no tunneling channel in the zero-bias
region inside the central Coulomb diamond. Such a tunneling
channel is absent in experiments on single-molecule transis-
tors characterized by weak coupling between molecules and
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FIG. 2. �Color online� Results for the self-consistent GW ap-
proximation at zero applied source-drain bias and kBT=0. �a� Im-
purity occupation number as a function of gate voltage. �b� Spectral
function for three different values of the gate voltage VG. Using
U=4.78 and �=0.05.
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electrodes1 but has been observed when coupling to the elec-
trodes is strong enough that the Kondo temperature is appre-
ciable TK�10–30 meV.1,2

At zero bias, zero temperature, and at the symmetric
point, the unitarity limit47 requires that the differential con-
ductivity equals 2e2 /h. The broken �magnetic� symmetry so-
lution in the GW approximation in the strong-interaction re-
gime does not satisfy the unitarity limit; the spectral function
does not have the correct height near the chemical potential.
Therefore, the GW approximation cannot account for the
zero-bias tunneling channel observed for T
TK. Under finite
bias, the differential conductance due to the Kondo peaks in
the spectral function must fall off once the bias exceeds the
Kondo temperature32; the Kondo peak splits under nonzero
bias, following the two different chemical potentials and
broadens quickly with increasing bias. Therefore, the width
in applied bias for which such a channel would be observed
in the exact theory is of order TK. For the strong-interaction
regime considered here, this is negligible. Thus, the GW ap-
proximation provides the correct qualitative features of the
Coulomb blockade regime, namely, Coulomb diamonds with
no Kondo-assisted conductance channels.

The size of the Coulomb diamond depends on the inter-
play between the repulsion U and the coupling to the leads,

�. In the limit of U /�→� the system becomes effectively an
isolated ion, and the size of the diamond is set by U. In our
case, U /�
100 and the computed size of the Coulomb dia-
mond is only slightly smaller �by 
20%� in the GW approxi-
mation than in the Hartree-Fock approximation. However,
we suspect that the magnetic solution found in the GW ap-
proximation underestimates the electronic correlation origi-
nating from spin-spin quantum fluctuations, and thus a more
exact theory should result in smaller size Coulomb diamonds
than the ones we find.

The corresponding average electron occupation number
�n0� is shown in Fig. 3�b�, where we can see that �n0� takes
integer values of 0, 1, and 2 inside the Coulomb diamonds.
For a given gate voltage, the spectral function of the system
changes appreciably only when the left or right lead Fermi
levels get closer to one of the impurity resonance levels. As
soon as a resonant level is pinned by a Fermi level, the
current increases while the impurity occupation number ei-
ther increases or decreases depending whether the pinned
level is empty or occupied.

B. Hysteresis in the I-V characteristics

In an earlier study29 we concluded that, in the regime of
intermediate strength of the Coulomb interaction, the GW
approximation leads to a broken spin symmetry ground state
and thus fails to describe the spectral function correctly,
missing completely the Kondo peak. A nonmagnetic solution
in the interaction regime U /��8 has been elusive for other
authors as well.16 Recently, by employing a logarithmic fre-
quency scale near the Fermi level, we have been able to find
a nonmagnetic solution in the strong-interaction regime up to
U /�
25 and kBT=0. Our results45 show that equilibrium
properties of the Anderson model, such as the total energy,
Kondo temperature, T-linear coefficient of the specific heat
or linear-response conductance, are not satisfactorily de-
scribed by the nonmagnetic solution in the GW approxima-
tion, as it was previously noted for several of these
properties.29,30

For the interaction strength considered in the present
work, U /�
100, we have been able to calculate the non-
magnetic solution at zero bias by considering small nonzero
temperatures. We will consider kBT=0.01 throughout the rest
of the paper. Figure 4�a� shows the impurity occupation
number as a function of gate voltage for the nonmagnetic
solution. We see that the Coulomb blockade plateau is not
properly described; the impurity occupation number changes
linearly about the symmetric point VG+U /2=0. Figure 4�b�
shows the spectral function associated with the nonmagnetic
solution for two representative cases. In the symmetric case,
one sees a broad peak �whose width is set by U� with a
narrow portion near E=0 �whose width is set by kBT�. As the
gate voltage is changed from the symmetric point, the nar-
row portion remains pinned near E=0 but the broad peak
shifts together with VG, hence the linear change in �nocc� as
observed in Fig. 4�a�. Near VG+U /2= �2.8, the nonmag-
netic solution cannot sustain a narrow portion near E=0, and
the solution jumps into a phase with one narrow peak �of
width ��� away from E=0 �as seen in Fig. 2�b� for VG
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FIG. 3. �Color online� False color plots of junction properties
calculated in the self-consistent GW approximation as a function of
the applied source-drain bias V and gate voltage VG at kBT=0. �a�
Current. �b� Average impurity occupation number. Using U=4.78
and �=0.05.
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+U /2=4�. In the region of gate bias near the transition at
VG+U /2= �2.8, the calculations get increasingly difficult to
converge; for some values of the gate voltage a converged
solution with retarded functions obeying the Kramers-Kronig
relation could not be found.

Figure 5�a� shows the current through the junction I as a
function of the applied bias V for a specific gate voltage VG,
VG+U /2=0 such that the system is at half filling, �n0�=1.
The general results do not depend on this symmetry. The
same qualitative results hold for a broad range of gate bias

VG+U /2

2. Results obtained both in the GW and Hartree-
Fock approximations are shown. These include a forward
scan, starting from zero applied bias, and a reverse scan start-
ing from V=8. At zero bias, we start with the magnetic so-
lution, with one spin level occupied and the other one empty,
as shown by the solid-line curve of Fig. 2�b�. Then in the
forward scan, the initial input at higher bias is taken from the
converged solution at lower bias. For the reverse scan, the
opposite approach is taken. Note that the use of kBT=0.01
has essentially no effect on the results except for the reverse
scan with V
0.5 where the finite temperature helps to sta-
bilize the self-consistent magnetic solution. Also, for refer-
ence, the I-V data shown in Fig. 3�a� was obtained by for-
ward bias scan.

In both the Hartree-Fock and the GW approximations, as
the bias is increased, the two spin levels remain outside the

bias window and the current is negligible until V approaches
a value of order �but less than� U. In Hartree-Fock this value
is V
4.0 while in GW it is V
3.2. At this point, where the
broadened impurity levels get pinned by the two chemical
potentials, the character of the steady-state solution changes
from magnetic to nonmagnetic. At this bias, the current in-
creases suddenly. Correspondingly, the spectral function
shows one double-degenerate peak centered half way in be-
tween the two chemical potentials �Fig. 5�b��. For higher
bias, the Hartree-Fock and GW approximations result in
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source-drain bias and kBT=0.01. �a� Impurity occupation number as
a function of gate voltage. �b� Spectral function for two values of
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U=4.78 and �=0.05.
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sweep from V=8 to V=0. Results for the Hartree-Fock and GW
approximations are compared. �b� Corresponding spectral functions
for applied source-drain bias V=2. �c� Comparison of spectral func-
tions for the nonmagnetic solution in the GW approximation at
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qualitatively and quantitatively different behaviors. In
Hartree-Fock, the current is approximately pinned at the
value expected for a single half-filled resonance in the bias
window �2��e /h�. The overall downward drop is explained
by the finite bandwidth of the electrodes. However, in the
GW approximation, the spectral function shows substantially
larger broadening and the current increases steadily with bias
as the spectral weight inside the bias window increases. Cor-
respondingly, upon analysis of contributions to the current in
this regime, it is largely due to noncoherent transport, as
−I�r�� and the main component of the current is given by
the last term of the right-hand side of Eq. �27�. The backward
bias scan is started from the nonmagnetic solution at V=8.
As the bias is decreased, the solution remains nonmagnetic
well below the transition bias point from the forward bias
scan, resulting in hysteresis in the I-V curve. While, in
Hartree-Fock, the current remains high down to relatively
low applied bias, the calculated current in the GW approxi-
mation drops approximately linearly.

The physical description of the magnetic solution is
straightforward. The spectral function shows two peaks �Fig.
5�b��, spin up and spin down, one occupied and the other one
empty, separated in frequency by little less than U. The re-
sults from the GW approximation are very close to those
from Hartree-Fock approximation in this case. There are
very few occupied-to-empty electron-hole same-spin excita-
tions; the polarization P is very small.

The nonmagnetic solution is more complex and the physi-
cal picture is rather different for the Hartree-Fock and the
GW approximations. While, for Hartree-Fock, the spectral
function shows only one sharp peak with width equal to �,
the spectral function in the GW approximation is much
broader �Fig. 5�b��. While the overall broadening depends
strongly on the interaction parameter U, the applied bias V
affects the region of width V about E=0 �Fig. 5�c��. Further-
more, the width of the spectral function is almost indepen-
dent of the effective coupling coefficient �. For example, for
kBT=0.01 and V� �0,8�, the spectral function plot for �
=0.1 is almost undistinguishable from that for the �=0.05
case. This indicates that the broadening is due to quantum
fluctuations taking place on the impurity. The applied bias

dependent broadening can be traced back to the large imagi-
nary part of the retarded self-energy, as shown in Fig. 6. At
zero bias and zero temperature the Fermi-liquid behavior of
the system guarantees I�r�0�=0. The nonzero value of
Im �r�0� shown in Fig. 6 is clearly a nonequilibrium nonzero
bias effect. A similar broadening, increasing strongly with
bias, has been also observed in recent calculations based on
the GW approximation for a two-level model molecule.17

The broadening of the spectral function for the nonmag-
netic solution in the GW approximation can be understood
by looking at how the spectral function and the retarded
self-energy changes as we iterate the nonmagnetic solution
from Hartree-Fock to GW. Here we denote with G0W0 the
intermediate solution obtained with the Hartree-Fock
Green’s functions as input. At the Hartree-Fock level, the
nonmagnetic solution has one narrow central peak, with half
width at half maximum approximately given by �=0.05. The
entire peak is situated inside the bias window, as shown in
Fig. 7�a�. In that energy range one can find both occupied
and empty �more exactly half-occupied� quasistates of the
same spin. Now, such a quasistate can easily decay into an-
other quasistate with lower or higher energy by emitting or
absorbing an electron-hole same-spin excitation with energy
within the bias window range. Thus, I�r, which is propor-
tional to the inverse lifetime of the quasistate, becomes very
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large at the G0W0 level, as seen in Fig. 7�b�. From the G0W0
result for R�r �related to I�r through a Kramers-Kronig
relation�, it follows that the G0W0 spectral function shows
two double-degenerate �spin-up and spin-down� peaks, situ-
ated outside the bias window �Fig. 7�a��. If, at each of the
next iterative steps i, we would use as input only the Green’s
functions from iteration i−1, the spectral function would os-
cillate between the two types �Hartree-Fock and G0W0� of
solution. However, by means of the Pulay mixing scheme,
we are able to achieve convergence rather fast, with the self-
consistent GW solution looking somehow in between
Hartree-Fock and G0W0, as seen in Fig. 5�b�.

The calculated I-V curves in Fig. 5�a� result from the
existence of two steady-state solutions over a broad range of
applied bias that are accessed depending on initial condi-
tions. Our procedure of stepping the applied bias in forward
followed by reverse scans with self-consistent solution at
each step simulates an adiabatic voltage scan and the exis-
tence of two stable solutions results in hysteresis. One may
ask whether quantum fluctuations that are beyond the scope
of the GW approximation would eliminate the hysteresis. To
probe this, we need to understand the energy difference be-
tween the system in the magnetic and the nonmagnetic solu-
tions in the hysteretic region. Figure 8 shows the change in
the average energy of the total system, 
E, calculated as de-
scribed in Sec. III B, as a function of the applied bias at half
filling. Results are shown for both the Hartree-Fock and the
GW approximations, following the same loop of forward and
reverse bias scans. For weak effective coupling between im-
purity and leads, for the magnetic solution, one has 
E

Eimp+O���. Near equilibrium, the magnetic solutions in
the forward bias scan show very similar energies, close to the
energy of the isolated single-occupied impurity: 
Emag�VG
=−U /2. However, at the applied bias where the current rap-
idly increases and the solution changes to nonmagnetic,
Hartree-Fock yields an average energy higher than the mag-
netic one by about U /4. On the other hand, the GW approxi-
mation shows an average energy change that is much

smaller. Correspondingly, on the reverse bias scan, the bias
dependence of the average energy is also much different.
While the energy in the Hartree-Fock approximation remains
high as the bias approaches zero, the energy in the GW ap-
proximation approaches a value that is only higher than the
zero-bias magnetic state by about � /20.

We have found that in the strong-interaction regime, there
are two distinct self-consistent solutions with the GW ap-
proximation. These lead to hysteresis in the calculated I-V
curves. However, at zero bias, bistability is forbidden for the
Anderson model.18,19 Therefore, the states represented by
those solutions found in the GW approximation must be un-
stable with respect to quantum fluctuations that have not
been taken into account. The fact that the average energy of
the magnetic state is lower than that of nonmagnetic solution
is probably an indication of the larger weight of the magnetic
solution in the emerging exact many-body state. As the bias
is increased away from equilibrium, Fig. 8 shows that the
energy difference between nonmagnetic and magnetic con-
figurations also increases in the GW approximation. How-
ever, for applied bias larger than about � /20, the energy
difference is smaller than the applied bias. This means that at
nonzero biases on-shell processes will be possible through
which one configuration can decay into the other one �with
one electron transferring from one lead to the other to ensure
total-energy conservation�. We thus expect that, out of equi-
librium, the lifetime of the GW bistable states would be even
smaller than at equilibrium. Quantum fluctuations between
the two degenerate magnetic configurations and the nonmag-
netic one will eliminate the hysteresis, and renormalize in a
nontrivial way the emerging unique many-body state. There-
fore, the hysteresis in the I-V curve is probably another sig-
nal that the GW approximation is not representing important
aspects of the strong-interaction regime. A calculation of the
lifetime of the bistable states found with the GW approxima-
tion is beyond the scope of the present work but would be
very valuable.

V. SUMMARY

In this work we used the GW approximation to study the
role of electron-electron correlation effects in the out-of-
equilibrium single impurity Anderson model. We considered
the regime with weak level broadening and strong Coulomb
interaction, treating the electron-electron interaction with the
self-consistent GW approximation for the electron self-
energy. We found that the GW approximation accounts for
Coulomb blockade effects. The low conductance �blockade�
region in gate bias and source-drain bias corresponds to a
magnetic solution in the GW approximation. At the edge of
the blockade region, the current jumps and the self-consistent
solution changes to a nonmagnetic character. The position of
the transition and the jump in current are renormalized from
the Hartree-Fock values. However, we also found a self-
consistent nonmagnetic solution inside the Coulomb block-
ade region. As a consequence, the GW approximation also
predicts an unphysical hysteresis in the I-V characteristics of
the system. Outside the blockade region, e.g., where the
source-drain bias is high and the magnetic solution is not
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FIG. 8. �Color online� Change in the average energy of the
system as a function of applied source-drain bias for gate voltage
fixed to the symmetric case �half filling� and kBT=0.01. Curves
labeled magnetic correspond to a bias sweep from V=0 to V=8.
Curves labeled nonmagnetic correspond to a reverse bias sweep
from V=8 to V=0. Results for the Hartree-Fock and GW approxi-
mations are compared. Using U=4.78 and �=0.05.

GW APPROACH TO ANDERSON MODEL OUT OF… PHYSICAL REVIEW B 79, 155110 �2009�

155110-9



stable, we expect that the GW approximation gives a reason-
able account of the conductance. However, the jump in cur-
rent at the edge of the blockade region and the hysteresis
inside the blockade region both appear to arise from a first-
order-transition-like bistability in the GW approximation. An
analysis of the total-energy difference between the magnetic
and nonmagnetic solutions suggests that quantum fluctua-
tions beyond the scope of the GW approximation would re-
sult in rapid decay of the nonmagnetic solution, eliminating
both the sharp jump and the hysteresis.
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APPENDIX A: AVERAGE CURRENT THROUGH
THE JUNCTION

We start from the Meir-Wingreen expression for the cur-
rent from the left lead �in units of e=h=1� �Ref. 42�:

IL = i� d�Tr��L���G
��� + fL����L����Gr��� − Ga�����

� � d�JL��� . �A1�

Using that in steady state I= IL= �IL− IR� /2, and making use
of Eq. �9� and the relation:

Gr��� − Ga��� = Gr�����L
r ��� + �R

r ���

+ �r��� − H.c.�Ga��� , �A2�

one obtains:

I =
1

2
� d��fL��� − fR����Tr��L���Gr����R���Ga����

+
1

2
� d��fL��� − fR����Tr��R���Gr����L���Ga����

+
i

2
� d�Tr���L��� − �R����Gr����
���Ga����

+
i

2
� d�Tr��fL����L��� − fR����R����Gr���

���r��� − �r���†�Ga���� . �A3�

In the single impurity Anderson model case, the Green’s

functions are symmetric �the off-diagonal elements being
simply zero� and the first two terms in Eq. �A3� are equal,
with the final expression for the current reading as in Eq.
�27�.

APPENDIX B: CHANGE IN ENERGY CAUSED
BY IMPURITY

For simplicity, we consider eigenstates of the noninteract-
ing isolated junction �energies �n� and isolated leads �ener-
gies �k�. Denoting with g the Green’s function of the isolated
lead, the difference between the average energy of the total
system and the average energy of the isolated leads can be
written:


E = Eimp + Eimp-leads + 
Eleads, �B1�

where

Eimp =
1

2�
n
� d�

2�i
�� + �n�Gnn


 ��� , �B2�

Eimp-leads = R�
n,k
� d�

2�i
H0,nkGkn


 , �B3�

�we made use of the fact that G
���†=−G
����, and:


Eleads =
1

2�
k
� d�

2�i
��k + ���Gkk


��� − gkk

���� . �B4�

The expression for Gkn

 ��� can be derived rather easily in

the present case of noninteracting leads48:

Gkn

 ��� = �

m

gkk
r ���H0,kmGmn


 ��� + �
m

gkk

���H0,kmGmn

a ��� .

�B5�

Using

�
k

H0,nkgkk
r ���H0,km = �Lnm

r ��� + �Rnm
r ��� , �B6�

and

�
k

H0,nkgkk

���H0,km = ifL����Lnm��� + ifR����Rnm��� ,

�B7�

one arrives at the following expression for Eimp-leads:

Eimp-leads = R� d�

2�i
Tr����L

r ��� + �R
r �����G
���

+ i�fL����L��� + fR����R����Ga���� . �B8�

Using also the fact that the flux of particles coming in and
out from the junction is exactly zero in steady states:

� d��JL��� + JR���� = 0, �B9�
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⇒� d�Tr���L��� + �R����G
��� − �fL����L���

+ fR����R�����Ga��� − Gr����� = 0, �B10�

one can ignore taking the real part of the right-hand side of
Eq. �B8�:

Eimp-leads =� d�

2�i
Tr����L

r ��� + �R
r �����G
���

+ i�fL����L��� + fR����R����Ga���� ,

�B11�

which can be further written as in Eq. �31�.
Now let us focus on the expression for 
Eleads. Similarly

to Eq. �B5� one also has

Gkk

��� = gkk


��� + �
n

gkk
r ���H0,knGnk


 ���

+ �
n

gkk

���H0,knGnk

a ��� . �B12�

Further use of

Gnk

 ��� = �

m

Gnm

 ���H0,mkgkk

a ��� + �
m

Gnm
r ���H0,mkgkk


��� ,

�B13�

Gnk
a ��� = �

m

Gnm
a ���H0,mkgkk

a ��� , �B14�

gkkL�R�


 ��� = fL�R�����gkkL�R�
a ��� − gkkL�R�

r ���� , �B15�

�
k�L�R�

��k + ��H0,mkgkk
r ���gkk

a
r ���H0,kn

= lim

→0

� d�

2�

�� + ���L�R�mn
���

�� − � + i
��� − � � i
�
, �B16�

allows us to write the expression for 
Eleads as


Eleads =
1

2
� d�

2�i
Tr��SL��� + SR����G
��� − �SL���fL���

+ SR���fR�����Ga��� − Gr�����

−
1

2
�� d�

2�i
Tr��FL���fL��� + FR���fR����Gr����

+ H.c.� , �B17�

with

SL�R�nm
��� = lim


→0
� d�

2�

�� + ���L�R�nm
���

�� − � + i
��� − � − i
�
,

�B18�

FL�R�nm
��� = lim


→0
� d�

2�

�� + ���L�R�nm
���

�� − � + i
�2 . �B19�

The function S��� has a singular part which however does
not contribute to 
Eleads. Indeed, writing

SL�R�nm
��� = RFL�R�nm

��� + lim

→0

1

�
� d���

+ ���L�R�nm
���




�� − ��2 + 
2




�� − ��2 + 
2 ,

�B20�

the contribution to 
Eleads of the second term on the right-
hand side of Eq. �B20� is proportional to

lim

→0

1



� d��Tr���L��� + �R����G
��� − �fL����L���

+ fR����R�����Ga��� − Gr����� = 0, �B21�

which vanishes by virtue of the fact that the integral multi-
plying 1


 is proportional to the flux of energy coming in and
out from the junction, which is exactly zero in steady states:

� d���JL��� + JR���� = 0. �B22�

Thus, the expression for 
Eleads becomes:


Eleads =
1

2
� d�

2�i
Tr��RFL��� + RFR����G
���

− �RFL���fL��� + RFR���fR�����Ga��� − Gr�����

− R� d�

2�i
Tr��FL���fL��� + FR���fR����Gr���� .

�B23�

Noting that the function FL�R���� is related in a simple way
to the energy derivative of �L�R�

r ���, one finally arrives at
Eqs. �32� and �33�.

APPENDIX C: AVERAGE NUMBER OF DISPLACED
ELECTRONS IN THE LEADS

In a manner similar to the one described in detail in Ap-
pendix B, one can obtain an expression for the average num-
ber of electrons displaced in the two leads:


Nleads � �
k
� d�

2�i
�Gkk


��� − gkk

���� , �C1�

with the final expression reading:


Nleads = −� d�

2�i
Tr�� d

d�
R�L

r ��� +
d

d�
R�R

r ����G
���

− i� fL���
d

d�
I�L

r ��� + fR���
d

d�
I�R

r ����
��Ga��� + Gr����� . �C2�
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